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Geometrical shock dynamics, also called CCW theory, yields approximate equations
for shock propagation in which only the conditions at the shock appear explicitly;
the post-shock flow is presumed approximately uniform and enters implicitly via
a Riemann invariant. The non-relativistic theory, formulated by G. B. Whitham
and others, matches many experimental results surprisingly well. Motivated by
astrophysical applications, we adapt the theory to ultra-relativistic shocks advancing
into an ideal fluid whose pressure is negligible ahead of the shock, but is one third
of its proper energy density behind the shock. Exact results are recovered for some
self-similar cylindrical and spherical shocks with power-law pre-shock density profiles.
Comparison is made with numerical solutions of the full hydrodynamic equations.
We review relativistic vorticity and circulation. In an ultra-relativistic ideal fluid,
circulation can be defined so that it changes only at shocks, notwithstanding entropy
gradients in smooth parts of the flow.

1. Introduction
Gamma-ray-burst afterglows have spurred us to consider this problem. These

cosmologically distant events are believed to involve a shock launched by the death of
a massive star with initial Lorentz factor Γ0 > 102 relative to a pre-shock circumstellar
wind (mass density ρ0 ∝ r−2) or interstellar medium (ρ0 ∼ constant): see van Paradijs,
Kouveliotou & Wijers (2000), Piran (2005) and Mészáros (2006) for reviews. Light
curves fluctuate strongly at early times, probably because of unsteadiness in the
source; later, brightness falls approximately as a power law in time but often with
undulations that may be due to inhomogeneities ahead of the shock. The observed
radiation appears to be synchrotron emission, which implies that � 10−2 of the
post-shock energy density takes the form of magnetic field and highly relativistic
electrons. Even after compression by the shock, typical circumstellar or interstellar
fields would be many orders of magnitude too small. Therefore, it is often supposed
that magnetic energy is created rapidly by plasma instabilities at the shock front
(Medvedev & Loeb 1999). We wish to explore whether the compressed pre-shock
field might instead be amplified gradually by macroscopic fluid turbulence. The
source of the turbulence is supposed to be vorticity produced as the shock passes
over inhomogeneities in the ambient medium. Astrophysical applications, however,
are discussed elsewhere (Sironi & Goodman 2007). Our purpose here is to develop
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and test suitable theoretical tools: a relativistic version of geometric shock dynamics
(hereafter GSD); and, independently, a suitable redefinition of relativistic vorticity
that leads to conservation of the circulation on any fluid contour that does not cross
a shock.

The elements of non-relativistic GSD were developed in the 1950s (Moeckel 1952;
Chester 1954; Chisnell 1957; Whitham 1957, 1958, 1959). Whitham (1974) gives a
pedagogical review, upon which we have relied heavily. The one-dimensional version
of the theory gives a functional or even algebraic relationship (rather than a partial
differential equation) between variations in the pre-shock density and variations in the
shock Mach number. The multidimensional version describes the effect of changes
in shock area – divergence or convergence of the shock normals – on the Mach
number. Thus, the theory reduces the dimensionality of the problem by one: in three
dimensions, for example, it gives a closed set of equations for the evolution of the
shock surface. GSD has even been adapted to reacting flows (detonation waves: Li
& Ben-Dor 1998).

Naturally, there is a price to be paid in accuracy for these simplifications. For
a recent critique, see Baskar & Prasad (2005). Nevertheless, GSD often performs
remarkably well when there is reason to expect that fluid gradients or geometrical
constraints near the shock should dominate, rather than reflections from boundaries
behind the shock, and even in some cases where there is no such expectation. GSD
successfully describes diffraction of shocks around corners, acceleration of converging
shocks, and even the propagation of kinks (‘shock shocks’) along shock fronts, as
judged by comparisons with experiment and with exact self-similar solutions (Bryson
& Gross 1961; Schwendeman 1988; Whitham 1974, and references therein).

Relativistic units in which the speed of light c = 1 will be used. We adopt the
conventions of Schutz (1990) for tensors; in particular, the metric in Minkowski
coordinates xµ = (x0 = t, x1, x2, x3) is ηµν = diag(−1, 1, 1, 1), while T µν and T µ̄ν̄

denote the components of the same tensor in two Lorentz frames O, Ō. In all cases
considered here, the energy density of the pre-shock fluid will be dominated by rest
mass, so that pressure and turbulent motions can be neglected ahead of the shock.

2. Planar shocks
Our goal is to transcribe GSD for an ultra-relativistic ideal fluid. Following

Whitham (1974), we begin with the case that the area of the shock is constant
and the pre-shock density (ρ0) is stratified on planes parallel to the shock front.
In place of Mach number, we will be concerned with shock Lorentz factor (Γ ) or
rapidity parameter (Φ), the two being related by Γ ≡ coshΦ ≈ eΦ/2 � 1. These
quantities are defined in the rest-frame of the pre-shock medium.

The construction of GSD proceeds in two parts. First, the jump conditions are
derived from the basic conservation laws; these relate the post-shock fluid properties
to the pre-shock ones if Γ is given. This step is potentially exact but simplifies after
approximations based on Γ � 1, ρ ≈ 3P , and P0 � ρ0. Next, characteristic equations
are derived for the post-shock flow, and the (uncontrolled) approximation is made
that one of the Riemann invariants has a known and uniform value behind the shock.

2.1. Jump conditions

For a planar shock propagating in the x1-direction, the relevant components of the
energy-momentum tensor are

T 00 = (ρ + P )γ 2 − P, T 01 = (ρ + P )γ 2β, T 11 = (ρ + P )γ 2β2 + P, (2.1)
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where the fluid 4-velocity has components

Uµ → (γ, γβ, 0, 0) ≡ (coshφ, sinhφ, 0, 0)

measured in the shock rest frame. Here β = v/c is the conventional velocity (i.e.
3-velocity) of the flow relative to the speed of light, γ = (1 − β2)−1/2 is the
corresponding Lorentz factor, and the rapidity parameter φ is defined so that
β = tanhφ. The latter is convenient when all relative motions of interest are
parallel to a single axis (the x-axis in the present case), because it simplifies
the addition of velocities: that is, if the velocities of A relative to B and of
B relative to C are βAB = tanhφAB and βBC = tanh φBC , respectively, then
βAC = (βAB + βBC)/(1 + βABβBC), whereas φAC = φAB + φBC (Taylor & Wheeler
1966). The proper energy density ρ and pressure P are defined in the local fluid rest
frame, so that they are Lorentz invariants.

The jump conditions in the shock rest frame are that T 01 and T 11 should be
continuous. Since P ≈ ρ/3 behind the shock and P0 � ρ0 in front of it, these
conditions become

T 01 : 4Pγ 2β = −ρ0 Γ 2 T 11 : 4Pγ 2β2 + P = ρ0 Γ 2. (2.2)

Consistent with the ultra-relativistic approximation, the pre-shock 3-velocity has been
set to −1, which incurs an error ∼ O(Γ −2). Eliminating Γ 2ρ0 between the two
equations, dividing through by P , and setting γ −2 → 1−β2 yields (3β +1)(β +1) = 0.
The root β = −1 corresponds to no shock at all. Therefore, β = −1/3 in the shock
frame. In terms of the rapidity parameters of the fluid and the shock, tanh(Φ − φ) =
1/3, which is a covariant formulation since a Lorentz boost along x1 with velocity
v simply adds tanh−1 v to both φ and Φ . Substituting β = −1/3 and γ 2 = 9/8 into
either of (2.2) yields P = (2/3)Γ 2ρ0. So, the jump conditions are

φ = Φ − tanh−1 1
3

= Φ − ln
√

2 , (2.3a)

ζ ≡
√

3

4
lnP ≈

√
3

4
(ln ρ0 + 2Φ − ln 6) . (2.3b)

The peculiar factor
√

3/4 will simplify the characteristic equations below.

2.2. Whitham’s characteristic rule

Equations (2.3) give two relations among the four variables (φ, Φ, ζ, ln ρ0), or
equivalently, (γ, Γ, P, ρ0). They are exact up to terms O(Γ −2). Whitham’s formulation
of GSD adds one more condition: the Riemann invariant associated with the
characteristics that go upstream from the post-shock flow toward the shock, R+,
is supposed to have the same value as it would if the shock were a transition between
constant states. The rationale is that the perturbations to the shock front are supposed
to be localized; they are driven by small-scale density variations in the pre-shock fluid,
or by local geometrical constraints on the shock, and therefore these perturbations
are supposed to average out downstream.

So the next step is to derive the Riemann characteristics from the equations of
motion T µν

,ν = 0. This has been done in greater generality elsewhere (Johnson &
McKee 1971; Martı́ & Müller 1994), but for completeness we shall rederive the
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special case we need. With (2.1), the equations of motion become

T 0ν
,ν ∝ (2 cosh 2φ + 1)

4√
3
ζ̇ + (4 sinh 2φ)φ̇ + (2 sinh 2φ)

4√
3
ζ ′ + (4 cosh 2φ)φ′ = 0,

T 1ν
,ν ∝ (2 sinh 2φ)

4√
3
ζ̇ + (4 cosh 2φ)φ̇ + (2 cosh 2φ − 1)

4√
3
ζ ′ + (4 sinh 2φ)φ′ = 0,

in which the overdots denote ∂/∂x0 and the primes ∂/∂x1. Rather than manipulate
these equations directly, it is easier to boost into the local rest frame where φ = 0, find
the characteristics there, and then boost back. Since cosh 2φ → 1 and sinh 2φ → 0,
the equations above reduce to

ζ̇ +
1√
3
φ′ = 0, φ̇ +

1√
3

ζ ′ = 0.

By adding and subtracting these, one sees that the characteristic velocities are ±1/
√

3,
and the corresponding invariants ζ ± φ. Boosting along x1 to any other frame simply
adds a constant to φ. Therefore,

R+ ≡ ζ + φ is constant on C+ :

(
dx

dt

)
+

= tanh

(
φ + tanh−1 1√

3

)
, (2.4a)

R− ≡ ζ − φ is constant on C− :

(
dx

dt

)
−

= tanh

(
φ − tanh−1 1√

3

)
. (2.4b)

In Whitham’s approximation, R+ is constant not only along the C+ characteristics
but everywhere in the post-shock flow, even immediately behind the shock. Therefore,
evaluating φ and ζ from the jump conditions (2.3), one obtains

Φ + λ ln ρ0 ≈ constant, where λ ≡
√

3 − 3
2

≈ 0.232. (2.5)

This approximate equation predicts how the shock speed slows in response to
a transitory increase in pre-shock density: Γ ∝ ρ−λ

0 . With (2.3), we obtain the
corresponding changes in post-shock rapidity and pressure:

φ + λ ln ρ0 = constant; P ∝ ρ1−2λ
0 . (2.6)

A terse but rather general discussion of planar ultra-relativistic shocks, as well as
expansion into vacuum, is given by Johnson & McKee (1971). The exponent we
call λ is denoted s in their paper. Like us, they take the pre-shock medium to have
negligible internal motions and pressure. They restrict themselves to cases in which
the pre-shock density declines with increasing distance in front of the shock. This
ensures that the Riemann invariants are strictly conserved behind the shock. We
however allow for increases as well as decreases in ρ0; this can give rise to reverse
shocks, but while the Riemann invariants are then not strictly conserved, we will show
that they are very resilient, so that (2.6) remains a good approximation for very large
and abrupt changes in ρ0 provided only that the final Lorentz factor remains � 1.

2.3. Comparison with an exact self-similar solution

To reiterate, the approximation (2.5) is intended to describe localized and transitory
fluctuations in the propagation of a shock that has some prescribed average Lorentz
factor Γ̄ and advances into a ‘cold’ medium with some prescribed, but spatially
variable, pre-shock density ρ0 and negligible internal motions and pressure. Whitham
(1974) shows that the original non-relativistic version of his theory approximates
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rather well the self-similar propagation of a planar shock from x < 0 into a power-
law density profile ρ ∝ (−x)n, even though this situation does not entirely satisfy the
assumptions of GSD.

The corresponding ultra-relativistic solution is discussed by Sari (2006). The special
case of an exponentially declining pre-shock density, treated in passing by Johnson &
McKee (1971), has been discussed in more detail by Perna & Vietri (2002). In Sari’s
terminology, the case of interest at the moment is a planar (dimensionality parameter
α = 0) Type II solution: a ‘diverging’ shock expanding into a pre-shock density ∝ x−k

for 0 < x < ∞ with k > 2, or a ‘converging’ solution advancing from x < 0 into
ρ0 ∝ (−x)−k with k < 1 +

√
3/4. The Type I (II) solutions are those in which the

power-law scaling of shock position with time can (cannot) be deduced from global
energy conservation (Barenblatt 1996). Type II, where the scalings are determined
by local conditions near the shock – rather than the inertia of the ‘piston’ behind
it – is the case for which one might hope that Whitham’s theory would have some
success. Indeed, Sari’s equation (26) shows that the shock evolves as Γ ∝ ρ−λ with
λ exactly as in (2.5). The exactness of the agreement is surprising, for while Johnson
& McKee (1971) showed that (2.6) holds exactly for a shock expanding down a
decreasing density gradient, they assumed an initially uniform Riemann invariant R+.
The explanation probably has to do with the fact that in the Type II solutions, a sonic
point separates the immediate post-shock flow from regions farther downstream; the
shock outruns the possibly non-uniform conditions there. Equation (2.6) does not
agree with the Type I solutions, however: for example, for a diverging shock with
k = 0 (a planar shock resulting from an explosion in a uniform medium bounded by
a stationary rigid wall), Sari’s equation (20) predicts Γ ∝ x−1/2, which follows from
energy conservation since the wall does no work, whereas (2.6) would have Γ constant.

3. Non-planar shocks
No vorticity can be created by an exactly planar shock, yet the one-dimensional

theory above may be adequate for estimating the vorticity produced by encounters
between an ultra-relativistic shock and a density inhomogeneity. Lorentz contraction
causes the lateral dimension of inhomogeneities viewed in the shock or post-shock
frame to be larger by a factor Γ � 1 than the longitudinal ones, so that changes
in speed and pressure are impressed upon the immediately post-shock flow before
it ‘notices’ that the changes differ at other lateral positions. Thus it should usually
be sufficient to evaluate the flow changes from the one-dimensional theory, and then
take lateral derivatives to evaluate the resulting vorticity.

Nevertheless, it is worthwhile to extend the ultra-relativistic version of Whitham’s
theory to non-planar shocks for several reasons:

(i) in order to study the stability of the shock;
(ii) in order to compare with exact spherical and cylindrical self-similar solutions,

and with numerical tests such as refraction around an (oblique) corner;
(iii) because the extension is not difficult.
The idea of Whitham’s non-planar extension is to insert a factor representing

changes in shock area into the conservative form of the fluid equations. Thus let
x1 be a coordinate measuring arclength along the shock normal, and x2 and x3 be
coordinates in the shock surface defined in such a way that a point moving along the
shock normal maintains constant (x2, x3). The equations of motion are taken to be

T 00
, 0 + A−1(AT 01), 1 = 0, T 10

, 0 + A−1(AT 11), 1 = 0. (3.1)
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Here A is the two-dimensional Jacobian relating the area of an element of the shock
surface to its initial area. More precisely, since the characteristic equation does not
hold across the shock, A represents the cross-sectional area of a bundle of streamlines
immediately behind the shock; since the pre-shock medium is assumed to be at rest,
the flow behind the shock is normal to it.

Equations (3.1) are not fully equivalent to T µν
; ν = 0: for µ = 1, they do not contain

the part of the covariant derivative associated with turning of the shock normal. They
do however represent the divergence or convergence of the normals, which leads to
area change and strengthens or weakens the shock. Because of the terms involving
A, the quantities R± are no longer invariant along their respective characteristics C±.
The equation for R+ then becomes(

d

ds

)
+

(ζ + φ) = − sinhφ√
3 sinhφ + coshφ

(
d

ds

)
+

lnA

→ − 1√
3 + 1

(
d

ds

)
+

lnA , (3.2)

where (d/ds)+ ≡ ∂1 + (v+)−1∂0 is the derivative along the C+ characteristic, and
v+ ≡ tanh[φ + tanh−1(1/

√
3)] is the characteristic velocity. The final form of (3.2) is

in the pre-shock rest frame where tanh φ ≈ 1 with corrections O(Γ −2) � 1.
The jump conditions (2.3) are unchanged. Inserting these into (3.2) yields

d

ds
(Φ + λ ln ρ0 + µ ln A) ≈ 0, (3.3a)

λ ≡
√

3 − 3
2
, µ ≡ 3

√
3 − 5. (3.3b)

Following Whitham, we have made the approximation that the characteristic equation
applies on the shock, although its propagation speed (rapidity Φ = φ + tanh−1(1/3))
is not quite the same as that of the characteristic (tanh−1 v+ = φ + tanh−1(1/

√
3)).

Consistent with this approximation, the derivative d/ds in (3.3) is taken to be the
derivative with respect to arclength along the shock normal. Equation (3.3) predicts
that the shock decelerates locally where its area increases, and accelerates where the
area decreases. This will tend to stabilize corrugations in the shock front.

Equations (3.3) need to be supplemented by a vector equation for the shock
normals. Introduce a function τ (x, y, z) such that the locus of the shock in Minkowski
coordinates is described by t = τ (x, y, z). The normal to the shock is then n = ∇τ/|∇τ |,
and its 3-velocity is V = n/|∇τ |. The area function A of the shock satisfies

∇·
( n

A

)
= 0. (3.4)

This is a purely geometrical, rather than dynamical, statement. Whitham (1974)
demonstrates it by applying Gauss’s Law to a ‘flux tube’ whose sides are made up of
integral curves of n, and whose ends are elements of the shock surface at different
times.

3.1. Comparison with non-planar self-similar solutions

Sari (2006)’s equation (26) for Type II solutions is equivalent to

d

dr
ln Γ = α(5 − 3

√
3) −

(√
3 − 3

2

) d

dr
ln ρ,

ρ ∝ r−k being the pre-shock density. Here α = 0, 1, 2 for planar, cylindrical, and
spherical shocks, respectively. Since the area factor should scale as A ∝ rα in these
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three geometries, equation (3.3) predicts Sari’s result perfectly. Again, GSD does not
work for the Type I solutions, which include those of Blandford & McKee (1976):
for example, a spherical ultra-relativistic blast wave encountering a uniform external
medium has Γ ∝ r−3/2 rather than Γ = constant as predicted by (3.3), because the
self-similar behaviour is global and energy is conserved.

In these self-similar solutions, dimensionality plays a limited role since individual
shock normals are constant. Whitham (1974) discusses applications of the non-
relativistic theory to non-self-similar and truly multidimensional problems such as
refraction of shocks around corners and obstacles. Here we can expect (3.3) and
(3.4) not to be exact since, as noted above, they do not incorporate the full covariant
derivatives in the equations of motion, and since the streamlines behind the shock
are not perfectly straight.

3.2. Detailed treatment of initially planar shocks in two dimensions

These details illustrate effects that involve changes in the shock normal, including the
transverse propagation of disturbances along the shock front.

We take z to be the ignorable coordinate. Following Whitham again, let ψ be the
angle between the normal and the x-axis, so that ∂τ/∂x = |∇τ | cosψ = V −1 cos ψ

and ∂τ/∂y = V −1 sinψ . Equation (3.4) can then be rephrased as the two first-order
equations

∂

∂x

(
V −1 sin ψ

)
− ∂

∂y

(
V −1 cosψ

)
= 0 , (3.5a)

∂

∂x

(
A−1 cosψ

)
+

∂

∂y

(
A−1 sinψ

)
= 0 , (3.5b)

of which the first is simply the statement that ∂2τ/∂y∂x = ∂2τ/∂x∂y. Together with
(3.3), equations (3.5) form a hyperbolic system. This is especially clear in the paraxial
approximation where ψ ∼ O(Γ −2). To this order, we may then replace sin ψ → ψ ,
cos ψ → 1, and V → 1 − (2Γ 2)−1, so that (3.5) become

∂ψ

∂x
+

1

2

∂

∂y

(
ψ2 − Γ −2

)
= 0, (3.6a)

∂

∂x
A−1 +

∂

∂y

(
A−1ψ

)
= 0. (3.6b)

With our ordering, the term in ψ2 is of higher order than the others – it results from
taking cos ψ = 1 − ψ2/2 rather than unity in (3.6a) – but it does no harm and in fact
makes the characteristic velocities work out more neatly.

If the shock is initially planar and the pre-shock density initially uniform, then (3.3)
implies that Φ + λ ln ρ0 + µ lnA is constant throughout the flow. Thus Γ in (3.6a) is
to be regarded as a function of A and (x, y), given by

Γ (A, x, y) = Γ̄ ρ̄λĀµρ−λ
0 A−µ, (3.7)

in which the barred quantities are constants pertaining to the initially uniform medium
and planar shock, and ρ0(x, y) is a prescribed function. The characteristic velocities
of the system (3.6)–(3.7) are (

dy

dx

)
±

= ψ ± µ1/2Γ −1. (3.8)
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The factor of Γ −1 is easy to interpret as a consequence of relativistic beaming. A
disturbance propagating at the speed of light along an otherwise planar shock front
would have transverse velocity dy/dt = ±Γ −1 in the pre-shock rest frame. To leading
order in Γ −1, we may replace dt with dx in this expression, so with µ1/2 ≈ 0.4429,
the characteristics (3.8) are subluminal.

Since (3.5) and (3.6) are in conservation form, we may use them to study
discontinuities in the shock front itself:‘shock shocks’. For a shock shock propagating
at slope U ≡ (dy/dx)ss, the jump conditions implied by (3.6) are[

−2Uψ + ψ2 − Γ −2
]

= 0, (3.9a)[
A−1(ψ − U )

]
= 0, (3.9b)

where [Q] denotes the discontinuity in quantity Q across the shock shock. Let us
assume a homogenous pre-shock medium, ρ0 = ρ̄ = constant, Γ = constant. Then if
ψ = 0 and A = 1 ahead of the shock shock, the post-shock-shock quantities (ψ ′, A′)
satisfy

(UΓ )2 =
(A′)2µ − 1

(A′)2 − 1
, ψ ′ = U (1 − A′). (3.10)

Thus in the limit A′ → 0, we have ψ ′ = U = 1/Γ , and it follows from (3.7) that
Γ ′ → ∞. In the opposite limit A′ � 1 – but still A′ � Γ 1/µ so that Γ ′ � 1 (else the
ultra-relativisitic approximation would not apply) – we have ψ ′ = −(A′)µ/Γ = −1/Γ ′

and U = −ψ ′/Γ ′.
Finally, because gamma-ray-burst shocks are believed to emanate from effectively

point-like explosions, it is of interest to consider a nearly spherical rather than planar
shock. This case is effectively two-dimensional if the perturbations are axisymmetric.
We take polar coordinates (r, θ, φ) such that θ = 0, π is the axis of symmetry and
define ψ to be the angle between the normal and radial directions, i.e. n · r = cosψ .
The analogues of (3.5) then become

∂

∂r

(
r sinψ

V

)
− ∂

∂θ

(
cosψ

V

)
= 0, (3.11a)

∂

∂r

(
r2 cos ψ

A

)
+

r

sin θ

∂

∂θ

(
sin θ sinψ

A

)
= 0, (3.11b)

and for ψ � 1, Γ � 1, (3.6) become

∂

∂r
(rψ) +

1

2

∂

∂θ

(
ψ2 − Γ −2

)
= 0, (3.12a)

∂

∂r

(
r2

A

)
+

r

sin θ

∂

∂θ

(
ψ sin θ

A

)
= 0, (3.12b)

while (3.7) is unchanged.

4. Relativistic vorticity
The discussion in this section is independent of the approximations of GSD,

although the ultra-relativistic equation of state P = ρ/3 figures prominently.
As explained above, we are motivated by the need to explain the amplification

of magnetic field behind the shocks associated with gamma-ray bursts, and by the
possible role of turbulence in this amplification. Therefore, it may be worthwhile to
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record our assumptions about the relation of post-shock vorticity to the magnetic
field.

It follows from the induction equation of ideal magnetohydrodynamics,

∂t B = ∇ × (v × B), (4.1)

that magnetic energy increases according to

d

dt

∫
B · B d3x =

∫
BiBj ∂ivj d3x ,

which involves the instantaneous shear (∂ivj + ∂j vi − 2
3
∇ · v) and convergence (∇ · v)

of the velocity field rather than the vorticity, which is its curl. Nevertheless, vorticity
is important to secular amplification of the field by localized disturbances. In an ideal
fluid, a localized non-vortical disturbance evolves into sound waves, whose oscillations
produce only transitory changes in magnetic energy, and which propagate away from
their source. Energy in vortical motions, however, remains localized, and the shear
between neighbouring eddies is expected to amplify the field exponentially on their
turnover time. For a fuller discussion see, for example, Kulsrud (2003).

4.1. Vorticity and circulation

Non-relativistically, the vorticity ω ≡ ∇ × v, where v is the fluid 3-velocity. In a
compressible but isentropic fluid without shocks, Kelvin’s Circulation theorem is

d

dt

∮
C

v · dl = 0, (4.2)

where C is closed contour advected by the flow.
The generalization of ω and (4.2) to relativistic flow is not entirely straightforward

(Eshraghi 2003). Let U = (U 0, U 1, U 2, U 3) be the 4-velocity of the fluid, so that
ηµνU

µUν = −1. In terms of the local rest-frame energy density ρ and pressure P , the
energy-momentum tensor is

T µν = (ρ + P )UµUν + ηµνP . (4.3)

The equations of motion

T µν
, ν = 0 (4.4)

must be supplemented by an equation of state. Normally this involves two independent
thermodynamic variables, e.g. P = P (ρ, T ), P (ρ, N ), or P (N, S), where T is the rest-
frame temperature, N is the proper number density of conserved particles, and S is
the entropy per particle. An essential feature of ultra-relativistic shocks is that the
post-shock particles are highly relativistic in the fluid rest frame, so that P = ρ/3
(this assumes that the stress is isotropic, which is not at all obvious in astrophysical
applications where the plasma is collisionless.) To the extent that the fluid is ideal
(equation (4.3)), entropy and temperature gradients then have no effect on the flow –
except at shocks, but even there they do not have to be addressed explicitly.

To illustrate this point, we consider a general equation of state in which entropy
does influence the dynamics. The conservation of particle number is expressed by

(NUµ),µ = 0. (4.5)

The vorticity tensor is

Ωµν ≡ −Hµ,ν + Hν,µ , (4.6)
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in terms of the relativistic enthalpy h and its associated current Hµ:

h ≡ ρ + P

N
, Hµ ≡ hUµ . (4.7)

With the First Law of Thermodynamics d(ρ/N) = T dS − Pd(1/N) in the form
N−1dP = dh − T dS, (4.4) can be rewritten as

UνHµ,ν = T S, µ − h, µ . (4.8)

The vorticity equation then follows from the curl of this, namely

−(UνHα,ν), β + (UνHβ,ν), α = UνΩαβ, ν + Uν
,βΩαν + Uν

,αΩνβ

= T,αS, β − T,βS, α . (4.9)

The last line above vanishes if the entropy is uniform, S, µ = 0, or more generally
if there is only one independent thermodynamic quantity so that S = S(T ). The
intermediate expression is the Lie derivative LU of the vorticity considered as a 2-
form, Ω ≡ dH , in which dH = Hµdxµ is the one-form embodiement of the enthalpy
current and dH = Hµ,νdxν ∧ dxµ is its exterior derivative. Thus the vorticity tensor is
‘conserved’ by isentropic flow in the sense that LUΩ = 0, and this can be shown to be
equivalent to a circulation theorem. It would seem more natural to define the vorticity
directly in terms of the 4-velocity, i.e. as dU , but the latter ‘vorticity’ is conserved only
under conditions that are too restrictive for our purposes, such as pressureless flow
or uniform cosmological expansion.

In non-relativistic fluid mechanics, we are accustomed to thinking of vorticity as
a vector field rather than an antisymmetric tensor. Fortunately, vorticity can be
expressed by a 3-vector even in relativity, at least in isentropic flow, because Ωαβ then
has only three independent components. One can show this by using (4.6) and

−h, µ = (HνU
ν), µ = Hν,µUν + HνU

ν
, µ = Hν,µUν + h(UνU

ν) , µ = Hν,µUν ,

to rewrite (4.8) as

UνΩµν = T S,µ . (4.10)

Therefore if the fluid is isentropic, then in the local fluid rest frame where Uν → δν
0 , the

‘electric’ components Ωi0 = −Ω0i of the vorticity vanish, and only the three ‘magnetic’
components Ωij = −Ωji survive. Let ω be the three-vector field with components
ωi = εijkΩjk/2 in an arbitrary inertial frame (not necessarily coinciding with the local
fluid rest frame). Using (4.10) with S, µ = 0 to eliminate the components Ωi0 in a
general reference frame from the identity

Ωαβ,γ + Ωβγ,α + Ωγα,β = 0,

which is the tensorial expression of ddH = 0, one obtains for isentropic conditions,

∂tω − ∇ × (v × ω) = 0, (4.11)

where v is the 3-velocity, vi = Ui/U 0. This is formally identical to the non-relativistic
vorticity equation of an isentropic fluid, except that ω is ∇ × H rather than ∇ × v.
The derivation just given, which parallels that of the induction equation (4.1), shows
that (4.11), like the ideal induction equation, is relativistically covariant even though
it is formulated in terms of three vectors

Now we specialize to the ultra-relativistic equation of state, P = ρ/3. The true
entropy per particle is S = kB ln(P 3/4/N)+constant: the argument of the logarithm is
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proportional to the volume of phase space per particle in a non-degenerate relativistic
ideal gas, which is probably the relevant limit for gamma-ray bursts (Landau &
Lifshitz 1980). This entropy will not be uniform behind a shock that has passed
over density inhomogeneities. However, we may define an ersatz number density
Ñ ∝ P 3/4 at some initial time, so that P/Ñ4/3 is spatially uniform. If we demand
that Ñ evolve according to (4.5) with Ñ replacing N , then P/Ñ4/3 will remain
uniform in smooth parts of the flow, though not across shocks. This follows because
UµT µν

,ν = −3UνP, ν − 4PUµ
,µ = 0, whence Uν(P/Ñ4/3),ν = 0.

We do not have to deal with Ñ directly. Since h̃ ≡ (ρ + P )/Ñ = 4P 1/4, we can
simply redefine the enthalpy current as

Hµ = P 1/4Uµ (when P = ρ/3 only). (4.12)

Then (4.8) becomes

UνHµ,ν = −
(
P 1/4

)
, µ

, P =
(
HµHµ

)2
. (4.13)

The vorticity defined in terms of this H via (4.6) is conserved in the sense that the
right-hand side of (4.9) vanishes in all smooth parts of the flow, even after shocks.
In particular, if Ω = 0 initially then it remains zero as long as the flow remains
smooth. The jump conditions that follow from integrating (4.4) across shocks are not
equivalent to the corresponding integral of (4.9), however, and so this vorticity can
be created at shocks.

5. A numerical test of GSD
Whereas Johnson & McKee (1971) have shown that (2.5)–(2.6) hold for any

decreasing pre-shock density profile, provided that the post-shock flow is uniform
far downstream, we will now demonstrate that these relations can be accurate for
densities that increase quite sharply in the direction of shock propagation.

A special case amenable to semi-analytic treatment is that of a stepwise increase,
because it can be reduced to a relativistic Riemann problem. Consider a planar
shock propagating towards positive x into a pressureless medium whose density ρ0(x)
has the uniform values ρ̄ and ρR = f ρ̄ at x < 0 and x > 0, respectively, where
f > 1. Let t = 0 at the instant when the shock arrives at x = 0. Before t = 0 there
is but one shock, with rapidity Φ̄ measured in the pre-shock rest frame, and the
shock separates two uniform states related by the jump conditions discussed in §2.
The post-shock fluid rapidity and density are φL ≈ Φ̄ − ln

√
2 and ρL ≈ 2ρ̄ cosh2 Φ̄ .

After t = 0, there are two shocks: a forward shock with rapidity Φ+ advancing
into the new right-hand state, which has density ρR , pressure PR = 0, and rapidity
φR = 0; and a reverse shock with rapidity Φ− confronting the left-hand state, which
has the same properties (ρ, P, φ) = (ρL, ρL/3, φL) as those of the post-shock state
at t < 0. Between the two shocks an intermediate state has come into existence,
with properties (ρ, P, φ) = (ρI , ρI /3, φI ). The intermediate state is further divided
into left- and right-hand parts separated by a contact discontinuity across which
the pressure is continuous but the number density N is not; because of the ultra-
relativistic equation of state, however, the contact discontinuity has no effect on the
energy density and does not need to be taken into account when solving for Φ±.
Hence the present problem is in fact easier than the general Riemann problem for
an ideal non-relativistic gas. The following six equations determine the six unknowns
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Figure 1. A test of GSD. A shock of initial Lorentz factor Γ̄ = 10 encounters a discontinuous
increase in pre-shock density by the factor on the abscissa. The solid curve is the fractional
error in Lorentz factor of the forward shock predicted by (2.6). The dashed curve is the change
in the forward-going Riemann invariant (2.4) across the reverse shock.

(Φ+, Φ−, φL, φI , ρL, ρI ) in terms of the quantities (Φ̄, ρ̄, f ) that are given:

4
3
ρI sinh[2(Φ+ − φI )] = f ρ̄ sinh 2Φ+, (5.1a)

1
3
ρI [4 sinh2(Φ+ − φI ) + 1] = f ρ̄ sinh2 Φ+, (5.1b)

ρI sinh[2(Φ− − φI )] = ρL sinh[2(Φ− − φL)], (5.1c)

ρI [4 sinh2(Φ− − φI ) + 1] = ρL[4 sinh2(Φ− − φL) + 1], (5.1d )

4
3
ρL sinh[2(Φ̄ − φL)] = ρ̄ sinh 2Φ̄, (5.1e)

1
3
ρL[4 sinh2(Φ̄ − φL) + 1] = ρ̄ sinh2 Φ̄. (5.1f )

Equations (5.1a,b) express the continuity of T 01 and T 11 at the forward shock;
(5.1c, d), at the reverse shock; and (5.1e, f), at the shock that exists before t = 0.
These equations are exact for the idealized problem described. In particular, the
approximations Φ̄ � 1 and φL ≈ Φ̄ − ln

√
2 have not been assumed. As usual, at

each shock there are two solutions for the post-shock state in terms of the pre-shock
quantities and the shock speed; we select the solutions that are subsonic in the shock
frame.
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Results for Γ̄ = 10 are shown in figure 1. The GSD approximation (2.6) predicts
Γ = f −λΓ̄ for the forward shock. In this test problem, the GSD prediction errs by
no more than 10% for density contrasts up to f ≈ 600. Recall that GSD is based
on the approximation that the Riemann invariant on the C+ characteristics i.e. those
approaching the shock from the postshock side) has the same uniform value that it
has far downstream in the post-shock flow. This approximation cannot be exact when
there are reverse shocks, but the figure shows that the reverse shock changes R+ little
unless the density contrast is very large. Since (2.6) would predict Γ < 1 for f > Γ̄ 1/λ,
self-consistency alone demands that GSD should fail above f = 104.3 ≈ 2 × 104 in
this case; remarkably, it does not fail much earlier.

In short, we find that the ultra-relativistic GSD approximation works surprisingly
well even for very large density contrasts, both positive and negative. We have also
developed an ultra-relativistic conservation law for vorticity. In a sequel to this work
(Sironi & Goodman 2007), we combine these results to estimate the turbulence and
magnetic-field amplification that may occur behind an ultra-relativistic gamma-ray-
burst shock if it propagates into a suitable inhomogeneous medium.

We thank our anonymous referees for criticisms that have improved this paper,
especially with regard to the survey of previous literature. We acknowledge the use
of the Scheides cluster at the Institute for Advanced Study.
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